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Algorithmic techniques of various kinds are almost universally used in 
mathematical physics. These are frequently supplemented, in the case of 
fundamental physics, by a few of the elementary techniques of formal logic. 
In most cases, the semiotic aspect of  the subject is not considered explicitly. 
This may be justifiable in principle if  one has arrived at a short set of  mathe- 
matical axioms from which the results of the theory under consideration 
may be deduced mathematically in a direct manner, though any interpreta- 
tions of terms and connectives left without semantic comment until such 
axioms are obtained are in general likely to be unrewarding from the point 
of  view of a directional semantic discussion of physical concepts. For  
instance, typical summaries of the lattice-theoretic approach to quantum 
mechanics assume that the sign ' = '  means 'implies'. Reference to the 
literature of formal logic gives a large number of  different ways ' implication' 
may be mathematically formalised (Curry, 1957), none of them (of course) 
entirely satisfactory as formalisations of the U-language term. There is no 
immediate reason why the term 'implication' should be forced into the 
description of a physically complex theory like quantum mechanics. One 
can quote Kleene (1962); ' " Impl ica t ion"  is a handy name for ' ~  '. In using 
it, we follow the practice common in mathematics of employing the same 
designation for analogous notions arising in related technical theories. 
An example is the many different kinds of "addit ion" and "multiplication" 
in mathematics ' .  The easiest way out is to regard 'implies' as a label f o r '  ~ '  
and to endow that label with a U-language significance whenever one feels 
inclined to do so. 

However, if semiotic problems are ignored in this way, there are problems 
involved if one wishes to deduce a set of  mechanical rules which will allow 
the axioms of a theory to be deduced from given experimental data. As well 
as the obvious difficulty that it is hard to define connectives properly if one 
does not know what they are intended to mean in the U-language, there is 
also the diff• that until the metasemiosis problem has been considered 
a primitive frame with a clear U-language significance is unlikely to be 
obtained. In particular, since connectives 'v ' ,  '^ ' ,  and ' ~ '  appear to be 
basic connectors in many schemes of deduction, they may also arise as 
adjunctors in the axioms i f a  distinction (Curry, 1957) is not made between 
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connectors and adjunctors. The doing of this is a specific piece of 
formalism, but the reasons arise through metasemiosis. 

Further, in the case of a set of axioms obtained by mechanical rules, it 
may not be possible to assign any semantic meaning, however flimsy, to the 
axioms generated if one awaits their existence before assigning meanings to 
their components and to the generating rules. Indeed, to gloss over the 
semiotics implies largely ignoring the U-language infrastructure which has 
so far been a chief means of linking one scientific theory with another in 
interdisciplinary fields. 

The approach to computer axiomatics presented here therefore uses 
Curry's (1957) primitive frame, with the following additions. 

111. Theorems 
C. Order of application of rules 

These rules specify that the rules must be applied in such an order that, 
given certain terms in the system which represent experimental data, the 
rules 111A arise. Once this has been done, the rules 111B are deristricted as 
to order of application. 
D. Rules of computer operation 

These in turn delimit 111C. 

Thus, when specifications 1, l l ,  and 111 are made explicit, one has a 
represented formal system. To begin with, one defines the morphology in 
such a way that the experimental data can be represented. In the present 
exercise, all elementary propositions were of the fo rm '  - '. For a given 
automaton, the definition of 111D is implicit already, and one defines 111B 
and 111C in such a way as to be useful for any usual morphology. There is 
plenty of choice in the logical literature for 111B, and the formalism of the 
Gentzen L-system rules, including negation and quantifiers, was adopted. 
111C is of course more difficult to determine, but the general approach is to 
generalise specific expressions by quantification, to check the truth or 
falsity of the axioms thus obtained by generation of all expressions which 
may be generated from them, and to try several routes to a set of  axioms 
which will generate all the given data, and to choose the set of axioms which 
contains the minimum number of terms. Some of the difficulties involved 
are discussed and a more detailed resume is given elsewhere (Yates, 1969). 

It is interesting that falsifiability is virtually essential, in practice, if one 
is to avoid inconsistency, but that this falsifiability is not immediately 
equivalent to the lattice-theoretic notion of complementarity, and occurs 
in l l l B  as 

A ~ A  
F 

where A is a proposition, and F is a minimum refutable proposition. It 
would appear that formalisms which in effect split 111B so that parts of it 
are included in the U-language and parts of it in 111A are likely to run into 
difficulties on this point if used creatively in the development of axioms. 
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A computer program has been developed using the methods outlined 
above. It allows the development of axioms containing up to ten variables 
and twenty quantifiers to be deduced, using a possible total of eighty 
variables (Yates, 1969). It  can give short, plausible results for simple 
problems, such as the motion of a particle under a constant applied force. 
Numerical distance (di) and time (h) data, fitted into a morphology 
conceived only for the ends of formalisation and not specifically toward 
certain axioms, produce the following axiom 

V(d 3 d, = ~t, ~ 

(d,, h) are the (distance, time) pairs and 2~ is a specific numerical constant. 
These simple trial calculations suggest that a substantial escalation of the 

amount  of computer time required does not appear to be an inevitable 
concomitant of more advanced work along these lines. 
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